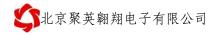


JYDAMPI05 脉冲输入计数模块说明书


北京聚英电子有限责任公司 2024 年 06 月

官网: www.juyingele.com

目 录

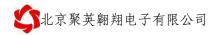
JYD	DAMPI05 脉冲输入计数模块说明书	1
目	录	1
-,	产品介绍	1
	1、产品概述	1
	2、产品特点	1
	3、产品功能	1
	4、产品参数	2
	1、硬件参数	2
	2、性能参数	2
二、	产品接口	3
	1、引脚说明	3
	2、接线说明	4
	3、状态指示灯	4
	4、通讯指示灯	4
三、	开发资料说明	5
	1、 Modbus 寄存器说明	5
	2、 参数说明	6
	3、 指令列表	7
	4、 指令详解	8
四、	常见问题与解决方法	10

一、产品介绍

1、产品概述

JY_DAMPI05 脉冲输入模块是一种脉冲检测设备,用于测量输入脉冲的数量, 支持通道正交计数。

本设备 485 通信部分采用光电隔离设计,防止信号相互干扰,保证通讯稳定性; 脉冲输入端同样使用高速光电隔离,允许宽电压输入。


本设备适用于自动化控制系统、脉冲计数系统等。

2、产品特点

- DC7~30V 宽压供电。
- 通讯隔离 3000V, 防静电, 雷击浪涌, 抗干扰能力强。
- 脉冲输入 10M (3000V) 高速光耦隔离, 计数脉冲范围广。
- 1-5 路脉冲输测量模式模式可动态配置,操作简单,精度高。
- 安装方便,标准 C45 (35mm) U 型通用导轨安装
- 工业级产品,满足不同领域的需求。

3、产品功能

- 支持 1-5 路<=100KHZ 脉冲输入。
- 支持正交和脉宽过滤计数,掉电可保存。
- 支持标准 Modbus 通讯协议。
- 设备支持 485 通讯,波特率 1200-115200 可配置。
- 设备通信地址为 1-254 可配置。

4、产品参数

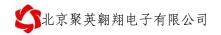

1、硬件参数

参数	说明
数据接口	RS485
额定电压	DC 7~30V
功耗	< 0.5W
工作模式指示	1路状态 LED 指示
通讯指示	1路通讯 LED 指示
尺寸	97*50*32mm
重量	330g
波特率	1200~115200
温度范围	-40℃~85℃

2、性能参数

官网: www.juyingele.com

参数	说明
输入数量	1~5路
脉冲高电平范围	3~24V DC (PNP)
脉冲检测范围	<100KHZ


二、产品接口

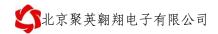
1、引脚说明

官网: www.juyingele.com

序号	引脚	说明
1	В-	485通讯接口 B-
2	A+	485通讯接口 A+
3	V-	设备供电接口 V-
4	V+	设备供电接口 V+
5	X5	脉冲5正输入接口
6	X4	脉冲4正输入接口
7	X3	脉冲3正输入接口
8	X2	脉冲2正输入接口
9	X1	脉冲1正输入接口
10	COM-	脉冲负输入接口

2、接线说明

设备电源口支持 7~30V DC 输入,485 接口负责配置设备参数,COM-为脉冲输入共负端,X1~X5 为脉冲源正信号输入端。


3、状态指示灯

正常工作时: 1秒闪烁1次。

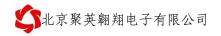
4、通讯指示灯

数据通讯时闪烁。

官网: www. juyingele. com

三、开发资料说明

本产品支持标准 modbus RTU 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。

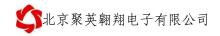

1、Modbus 寄存器说明

设备支持功能码: 03H(读保持寄存器), 04H(读输入寄存器), 06H(写单个保持寄存器)和 10H(连续写保持寄存器), 具体如下。

功能码 03 保持寄存器

寄存器	寄存器地址	数据类	数据定义	默认参数
地址	(十六进制)	型		
(十进				
制)				
0	0000	U32	脉冲1计数值H(低16位)	0
1	0001		脉冲1计数值L(高16位)	0
2	0002	U32	脉冲2计数值H(低16位)	0
3	0003		脉冲2计数值L(高16位)	0
4	0004	U32	脉冲 3 计数值 H(低 16 位)	0
5	0005		脉冲 3 计数值 L (高 16 位)	0
6	0006	U32	脉冲4计数值H(低16位)	0
7	0007		脉冲 4 计数值 L (高 16 位)	0
8	0008	U32	脉冲5计数值H(低16位)	0
9	0009		脉冲 5 计数值 L (高 16 位)	0
16	0010	S32	脉冲1正交计数值 H(低 16 位)	0
17	0011		脉冲1正交计数值L(高16位) 0	
18	0012	S32	脉冲2正交计数值H(低16位) 0	
19	0013		脉冲 2 正交计数值 L(高 16 位) 0	
20	0014	S32	脉冲 3 正交计数值 H (低 16 位) 0	
21	0015		脉冲 3 正交计数值 L (高 16 位) 0	
22	0016	S32	脉冲 4 正交计数值 H(低 16 位)	0
23	0017		脉冲 4 正交计数值 L (高 16 位)	0
24	0018	S32	脉冲 5 正交计数值 H (低 16 位) 0	
25	0019		脉冲 5 正交计数值 L(高 16 位) 0	
100	0064	U32	脉冲1计数值H(低16位)	0
101	0065		脉冲1计数值L(高16位)	0

官网: www. juyingele. com



	i			1
102	0066	U32	脉冲2计数值H(低16位)	0
103	0067		脉冲2计数值L(高16位)	0
104	0068	U32	脉冲 3 计数值 H (低 16 位)	0
105	0069		脉冲 3 计数值 L (高 16 位)	0
106	006A	U32	脉冲 4 计数值 H(低 16 位)	0
107	006B		脉冲 4 计数值 L (高 16 位)	0
108	006C	U32	脉冲 5 计数值 H (低 16 位)	0
109	006D		脉冲 5 计数值 L (高 16 位)	0
116	0064	S32	脉冲1正交计数值 H(低 16 位)	0
117	0065		脉冲1正交计数值L(高16位)	0
118	0066	S32	脉冲2正交计数值H(低16位)	0
119	0067		脉冲2正交计数值L(高16位)	0
120	0068	S32	脉冲 3 正交计数值 H(低 16 位)	0
121	0069		脉冲 3 正交计数值 L (高 16 位)	0
122	006A	S32	脉冲 4 正交计数值 H(低 16 位)	0
123	006B		脉冲 4 正交计数值 L (高 16 位)	0
124	006C	S32	脉冲 5 正交计数值 H(低 16 位)	0
125	006D		脉冲 5 正交计数值 L (高 16 位)	0
1000	03E8	U16	设备 Modbus 地址	
1001	03E9	U16	设备通信配置	
1100	044C	U16	通道 1~2 工作模式(不可配置)	0
1101	044D	U16	通道 3~4 工作模式(不可配置)	0
1102	044E	U16	通道 5 工作模式(不可配置)	0
1108	0454	U16	通道1正交对象	0
1109	0455	U16	通道2正交对象	0
1110	0456	U16	通道3正交对象	0
1111	0457	U16	通道4正交对象 0	
1112	0458	U16	通道5正交对象	0

2、参数说明

2.1、脉冲计数值

脉冲的计数有效值为 U32 类型,可读可写,其中计数值 L 为 U32 的低 16 位、计数值 H 为 U32 的高 16 位、支持可读可写、掉电保持功能,最大支持 2^3 计数值 L: 0x0002, 计数值 L: 0x0058, 实际计数值 135000。

2.2、脉冲正交计数值

脉冲的正交计数有效值为 S32 类型, 计数值 = 对应通道 - 正交对象通道的输入脉冲数, 其中计数值 L 为 S32 的低 16 位、计数值 H 为 S32 的高 16 位。

例如: 计数值 L: 0x0002, 计数值 L: 0x0F58, 实际计数值 135000。

2.3、设备 Modbus 地址

设备的 Modbus 通信地址配置,广播地址 254,有效配置范围为 1~254.

2.4、485 通讯配置

有效数据长度为 16bit, 其中各 bit 位代表以下含义。

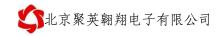
字节位数	定义	说明
Bit0~Bit4	波特率配置	0: 9600
		1: 2400
		2: 4800
		3: 9600
		4: 11400
		5: 19200
		6: 38400
		7: 56000
		8: 57600
		9: 115200

2.5、设备 Modbus 地址配置

设备 Modbus 协议通讯地址, 默认 254 广播地址。

2.6、通道 1~5 正交对象

默认: 0~禁用。


脉冲n的计数正交对象。

脉冲正交计数:在脉冲高电平时检测正交对象的电平信号,其正交对象高电平时计数有效,低电平计数值减一。

3、指令列表

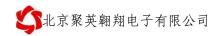
3.1 查询指令

查询数据	RTU 格式(16 进制发送)	描述
设备通信地址	FE 03 03 E8 00 01 10 75	查询 1000
返回数据	FE 03 02 00 01 6D 90	返回查询信息
设备通信配置	FE 03 03 E9 00 01 41 B5	查询 1001
返回数据	FE 03 02 00 00 AC 50	返回查询信息

通道 1~5 的正交 对象	FE 03 04 54 00 05 D1 26	查询 1108
返回数据	FE 03 0A 00 00 00 00 00 00 00 00 00 00 48	返回查询信息

3.2 配置指令

配置参数	RTU 格式(16 进制发送)	描述
配置通道1计数	FE 10 00 64 00 02 04 00 17 00 00 77 67	配置 0100~0101 寄存
值		器
返回数据	FE 10 00 64 00 02 14 18	返回配置信息
配置设备地址	FE 06 03 E8 00 0C 1D B0	配置 1000 寄存器
返回数据	FE 06 03 E8 00 0C 1D B0	返回配置信息
设备通信配置	FE 06 03 E9 00 00 4C 75	配置 1001 寄存器
返回数据	FE 06 03 E9 00 00 4C 75	返回配置信息
通道1的正交对	FE 06 04 54 00 01 1C E5	查询 1008
象	TE 00 04 34 00 01 TC E3	旦 MJ 1000
返回数据	FE 06 04 54 00 01 1C E5	返回配置信息


4、指令详解

4.1 配置通道1计数值

FE 10 00 64 00 02 04 00 17 00 00 77 67

字段	含义	备注
FE	设备地址	广播通讯
10	10 指令	写入保持寄存器
00 64	起始地址	要写入的寄存器地址
00 02	操作的寄存器	要写入的字节数量
	数量	
04	写入的字节数	校验码
	里	
00 17 00 00	写入的数值	
77 76	CRC16	校验码

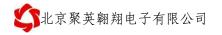
返回信息:

FE 10 00 64 00 02 14 18

字段	含义	备注
FE	设备地址	广播通讯
10	03 指令	返回指令:如果查询错误,返回 0x82
00 64 00 02	字节数	返回状态信息的所有字节数。
14 18	查询的测量值	测量周期信息。

4.2 修改 UART 配置

FE 06 03 E9 00 00 4C 75


字段	含义	备注
FE	设备地址	广播通讯
06	06 指令	写寄存器指令
03 E9	起始地址	修改通信端口配置地址
00 00	设置 UART	要设置的端口配置信息
4C 75	CRC16	校验码

返回信息:

官网: www.juyingele.com

FE 06 03 E9 00 00 4C 75

字段	含义	备注
FE	设备地址	广播通讯
06	06 指令	写寄存器指令
05 DC	起始地址	修改寄存器地址
00 01	设置地址	要设置的端口配置内容
9D 33	CRC16	校验码

四、常见问题与解决方法

1、设备计数值为0

答:观察脉冲输入端 LED 是否常亮或闪烁,无此变化,请重新参考模块接线图检测线路连接。

2、设备 Modbus 无法配置

答:设备 Modbus 协议默认广播地址为 254, 当遗忘设备地址配置时, 可使用广播地址重新配置。

3、脉冲计数值显示异常

答: 通过 Modbus 协议检测设备是否开启正交模式。

五、技术支持联系方式

联系电话: 010-82899827/1-803

联系 QQ: 4008128121